Constellation X-Ray Mission

Atlas –V Single Launch Configuration: Mirror Design

Paul Reid and Mark Freeman

Harvard-Smithsonian Center for Astrophysics

Constellation – X FST Meeting, December 19, 2006

Agenda

- Design "Rules"
- Spacecraft concepts
- Mirror Designs

Design Rules

- Single launch, single spacecraft
 - significant cost savings
 - possibility of launching sooner
- Remove 12 HXTs, 4 RGSs, but will be able to include 1 or 2 SEPs
- Maintain as much effective area and margin as possible, while also tracking closely SXT EA for E > 10 keV
- Simplicity, low cost
 - keep focal length at 10 m (no extendible optical bench)

Spacecraft Concepts

- Quickly settle upon 3 and 4 SXT designs
- Mass is tightest constraint
 - attempt to maintain 30 per cent mass margin
 - P/L mass limit for L2 ~ 6500 kg
 - used component masses for Delta IVH single launch configuration
 - 4 1.6 m OD SXTs, 4RGSs, 12HXTs, 10 m FL, 1 s/c
 - eliminate/scale component mass as appropriate
 - flight mirror assembly mass (structure+glass) is a significant mass driver (~ 45 per cent of P/L, including propellant)
 - assume structure mass scales with glass mass
- Mass constraint drives mirror design
 - glass mass
 - number of "shells"
 - diameter of shells
- P/L fairing dynamic envelope determines maximum OD of SXTs

Spacecraft Concepts

Reference Point

Baseline Design

- 1.6 m outer diameter
- 0.3 m inner diameter
- shell to shell spacing consistent with mirror length (200 mm) and 1.25 arc-min (rad.) unvignetted FOV
- 230 shells, divided into a set of 12 outer and 6 inner modules
 - 30 and 60 deg span, respectively
 - angular span of modules determined by maximum available size of glass substrates
- 460 mandrels (2/shell 1 @ for P and H)
- 3660 mirrors/SXT, 14640 mirrors total, excluding spares

Mirror designs

- Use maximum outer diameter consistent with fitting within payload fairing dynamic envelope
- 3 SXT design: 1.5 m OD (previously was 1.6 m)
 - same mirror design as baseline design and still meets mass constraint
 - inner diameter = 0.3 m
 - shell to shell spacing designed for 1.25 arc-min (rad) unvignetted FOV

4 SXT designs:

- max allowable OD 1.3 m
- tried designs with 1.2 and 1.3 m OD
- if maintain same shell to shell spacing as baseline, mass constraints limit the inner diameter to ~ 0.5 m
 - reduces high E effective area
- so, increase shell to shell spacing to cover the full range of graze angles to the 0.3 m minimum ID to improve high E response

Mirror designs - II

4 SXT designs (cont'd)

- tried a variety of designs using design FOV to adjust shell to shell spacing to meet mass constraint and occupy full range of diameters:
 - 1.2 m OD 0.43 m ID "1.25 arc-min" unvignetted FOV
 - 1.3 m OD 0.5 m ID 1.25 arc-min FOV
 - 1.3 m OD 0.3 m ID 10 arc-min FOV
 - » single module design
 - » 36 deg wide module
 - 1.3 m OD 0.3 m ID 6 arc-min FOV
 - » inner+outer module design
 - » 36 deg and 72 deg wide modules

Comparison of 4 SXT Designs

Single Radial Module

- 163 shells
 - •163 mandrel pairs
- 10 modules/SXT
 - •163 shells/module
 - $\cdot Rmax/Rmin = 0.65m/0.15m$
- 13040 mirrors/4 SXTs

Advantages (excluding performance)

- simpler FMA design
- less module/module alignment
- all modules identical
- easier to test diametrically opposed modules full ap in x-ray
- more space between shells

Inner/Outer Module

- 163 shells
 - •163 mandrel pairs
- 15 modules/SXT
 - •97 shells/outer module
 - \sim Rmax/Rmin = 0.65m/0.325m
 - •66 shells/inner module
 - \sim Rmax/Rmin = 0.289m/0.15m
- 10320 mirrors/4 SXTs

Advantages (excluding performance)

- fewer mirrors to make/align
- less time to assemble/modulemore modularity
- larger inner-most mirrors

Mirror-only EA: Comparison of 3 and 4 SXT designs

System EA: Comparison of 3 and 4 SXT designs

Vignetting off-axis: 1.25 arc-min design

Vignetting off-axis: 10 arc-min design

Summary

- 4 x 1.3 m OD, 6 arc-min unvignetted design with inner and outer modules offers good balance of performance relative to requirements and baseline performance.
 - loss of EA at low energies, but performance consistent with requirements
 - use of Ir compensates for fewer shells than baseline, giving improved performance at E > 3 keV
- Larger shell to shell spacing provides secondary benefit, as yet un/under-utilized, of less off-axis vignetting
 - stray light issues of larger shell to shell spacing need to be examined
 - may enable use of aperture plates
 - may allow larger "single-bounce" flux w/o aperture plates
- Fewer mandrels and mirror segments support reducing program cost and schedule